Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 91
1.
Hum Genet ; 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642129

Copper is a vital micronutrient involved in many biological processes and is an essential component of tumour cell growth and migration. Copper influences tumour growth through a process called cuproplasia, defined as abnormal copper-dependent cell-growth and proliferation. Copper-chelation therapy targeting this process has demonstrated efficacy in several clinical trials against cancer. While the molecular pathways associated with cuproplasia are partially known, genetic heterogeneity across different cancer types has limited the understanding of how cuproplasia impacts patient survival. Utilising RNA-sequencing data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) datasets, we generated gene regulatory networks to identify the critical cuproplasia-related genes across 23 different cancer types. From this, we identified a novel 8-gene cuproplasia-related gene signature associated with pan-cancer survival, and a 6-gene prognostic risk score model in low grade glioma. These findings highlight the use of gene regulatory networks to identify cuproplasia-related gene signatures that could be used to generate risk score models. This can potentially identify patients who could benefit from copper-chelation therapy and identifies novel targeted therapeutic strategies.

2.
Int J Pharm X ; 7: 100235, 2024 Jun.
Article En | MEDLINE | ID: mdl-38486882

In this study, we developed self-assembling nanoparticles (LCPs) able to trigger the release of Chlorambucil (Chl) and Doxorubicin (DOX) to MDA-MB-231 cells by exploiting the enzyme and redox signals. The DOX loaded LCPs was prepared by the self-assembly of two chondroitin sulphate (CS) derivatives, obtained by the covalent conjugation of Lipoic Acid (LA) and Chlorambucil (Chl) to the CS backbone. After the physic-chemical characterization of the conjugates by FT-IR, 1H NMR, and determination of the critical aggregation concentration, spherical nanoparticles with mean hydrodynamic diameter of 45 nm (P.D.I. 0.24) and Z-potential of - 44 mV were obtained by water addition/solvent evaporation method. In vitro experiments for the release of Chl and DOX were performed in healthy and cancer cells, using a cell culture media to maintain the physiological intracellular conditions (pH 7.4) (and concentration of esterase and GSH. The results allowed the selective release of the payloads to be detected: Chl release of 0 and 41% were obtained after 2 h incubation in normal and in cancer cells respectively, while values of 35 (in healthy cells) and 60% (in cancer cells) were recorded for DOX release after 96 h. Finally, viability studies proved the ability of the newly proposed nanosystem to enhance the cytotoxic activity of the two drugs against cancer cells.

3.
RSC Adv ; 13(48): 34045-34056, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-38020008

The key properties and high versatility of metal nanoparticles have shed new perspectives on cancer therapy, with copper nanoparticles gaining great interest because of the ability to couple the intrinsic properties of metal nanoparticles with the biological activities of copper ions in cancer cells. Copper, indeed, is a cofactor involved in different metabolic pathways of many physiological and pathological processes. Literature data report on the use of copper in preclinical protocols for cancer treatment based on chemo-, photothermal-, or copper chelating-therapies. Copper nanoparticles exhibit anticancer activity via multiple routes, mainly involving the targeting of mitochondria, the modulation of oxidative stress, the induction of apoptosis and autophagy, and the modulation of immune response. Moreover, compared to other metal nanoparticles (e.g. gold, silver, palladium, and platinum), copper nanoparticles are rapidly cleared from organs with low systemic toxicity and benefit from the copper's low cost and wide availability. Within this review, we aim to explore the impact of copper in cancer research, focusing on glioma, the most common primary brain tumour. Glioma accounts for about 80% of all malignant brain tumours and shows a poor prognosis with the five-year survival rate being less than 5%. After introducing the glioma pathogenesis and the limitation of current therapeutic strategies, we will discuss the potential impact of copper therapy and present the key results of the most relevant literature to establish a reliable foundation for future development of copper-based approaches.

4.
RSC Adv ; 13(39): 27180-27189, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37701282

Zinc oxide/Curcumin (Zn(CUR)O) nanocomposites were prepared via hydrothermal treatment of Zn(NO3)2 in the presence of hexamethylenetetramine as a stabilizing agent and CUR as a bioactive element. Three ZnO : CUR ratios were investigated, namely 57 : 43 (Zn(CUR)O-A), 60 : 40 (Zn(CUR)O-B) and 81 : 19 (Zn(CUR)O-C), as assessed by thermogravimetric analyses, with an average hydrodynamic diameter of nanoaggregates in the range of 223 to 361 nm. The interaction of CUR with ZnO via hydroxyl and ketoenol groups (as proved by X-ray photoelectron spectroscopy analyses) was found to significantly modify the key properties of ZnO nanoparticles with the obtainment of a bilobed shape (as shown by scanning electron microscopy), and influenced the growth process of the composite nanoparticles as indicated by the varying particle sizes determined by powder X-ray diffraction. The efficacy of Zn(CUR)O as anticancer agents was evaluated on MCF-7 and MDA-MB-231 cancer cells, obtaining a synergistic activity with a cell viability depending on the CUR amount within the nanocomposite. Finally, the determination of reactive oxygen species production in the presence of Zn(CUR)O was used as a preliminary evaluation of the mechanism of action of the nanocomposites.

5.
Molecules ; 28(15)2023 Aug 05.
Article En | MEDLINE | ID: mdl-37570862

The conjugation of polyphenols is a valuable strategy with which to confer tailored properties to polymeric materials of biomedical interest. Within this investigation, we aim to explore the possibility to use this synthetic approach to increase the viscosity of conjugates, thus allowing the release of a loaded therapeutic to be better controlled over time than in neat polyphenols. Curcumin (CUR) was conjugated to sodium alginate (CA) and chitosan (CS) with functionalisation degrees of 9.2 (SA-CUR) and 15.4 (CS-CUR) mg g-1. Calorimetric analyses showed higher degrees of chain rigidity upon conjugation, with a shift of the degradation peaks to higher temperatures (from 239 to 245 °C and from 296 to 303 °C for SA-CUR and CS-CUR, respectively). Rheological analyses were used to prove the enhanced interconnection between the polymer chains in the conjugates, confirmed by the weak gel parameters, A and z. Moreover, the typical non-Newtonian behaviour of the high-molecular-weight polysaccharides was recorded, together with an enhancement of the activation energy, Ea, in CS-CUR vs. CS (opposite behaviour recorded for SA-CUR vs. SA). The evaluation of the delivery performance (of Doxorubicin as a model drug) showed sustained release profiles, opening opportunities for the development of controlled delivery systems.


Chitosan , Curcumin , Nanoparticles , Curcumin/chemistry , Chitosan/chemistry , Alginates/chemistry , Drug Delivery Systems , Polymers , Nanoparticles/chemistry , Drug Carriers/chemistry , Drug Liberation
6.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37480151

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

7.
Molecules ; 27(22)2022 Nov 08.
Article En | MEDLINE | ID: mdl-36431774

Pharmaceutical products such as antibiotics, analgesics, steroids, and non-steroidal anti-inflammatory drugs (NSAIDs) are new emerging pollutants, often present in wastewater, potentially able to contaminate drinking water resources. Adsorption is considered the cheapest and most effective technique for the removal of pollutants from water, and, recently, membranes obtained by wet filtration method of SWCNT aqueous solutions (SWCNT buckypapers, SWCNT BPs) have been proposed as self-standing porous adsorbents. In this paper, the ability of graphene oxide/single-walled carbon nanotube composite membranes (GO-SWCNT BPs) to remove some important NSAIDs, namely Diclofenac, Ketoprofen, and Naproxen, was investigated at different pH conditions (pH 4, 6, and 8), graphene oxide amount (0, 20, 40, 60, and 75 wt.%), and initial NSAIDs concentration (1, 10, and 50 ppm). For the same experimental conditions, the adsorption capacities were found to strongly depend on the graphene oxide content. The best results were obtained for 75 wt.% graphene oxide with an adsorption capacity of 118 ± 2 mg g-1 for Diclofenac, 116 ± 2 mg g-1 for Ketoprofen, and 126 ± 3 mg g-1 for Naproxen at pH 4. Overall, the reported data suggest that GO-SWCNT BPs can represent a promising tool for a cheap and fast removal of NSAIDs from drinking water resources, with easy recovery and reusability features.


Drinking Water , Environmental Pollutants , Ketoprofen , Diclofenac/chemistry , Ketoprofen/chemistry , Naproxen/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry
8.
Int J Biol Macromol ; 221: 1491-1503, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36130642

DOX-loaded nanoparticles able to actively target CD44-receptors and respond to redox stimuli were proposed as non-conventional chemotherapeutic strategy in breast cancer. A covalent conjugate of human serum albumin and hyaluronic acid was prepared and assembled by a GSH-mediated desolvation in disulfide-crosslinked solid nanoparticles with mean diameter of 120 nm ± 3.4. The effective internalization of nanoparticles in cancer cells via CD44-receptors, together with the more efficient intracellular release, resulted in a significant increase of drug efficacy, with IC50 reduced from 0.9959 and 2.516 µg mL-1 to 0.4014 and 0.3094 µg mL-1 for MCF-7 and MDA-MB-231, respectively. Conversely, no enhancement in drug toxicity was recorded in healthy MCF-10A cells. The efficacy of the proposed formulation was further investigated in the different biological steps involved in metastasis process, paving the way for further in vivo experiments.


Breast Neoplasms , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Hyaluronic Acid/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cell Line, Tumor , Hyaluronan Receptors
9.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Article En | MEDLINE | ID: mdl-36014715

Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.

10.
Molecules ; 27(13)2022 Jun 23.
Article En | MEDLINE | ID: mdl-35807300

Water decontamination is an important challenge resulting from the incorrect disposal of heavy metal waste into the environment. Among the different available techniques (e.g., filtration, coagulation, precipitation, and ion-exchange), adsorption is considered the cheapest and most effective procedure for the removal of water pollutants. In the last years, several materials have been tested for the removal of heavy metals from water, including metal-organic frameworks (MOFs), single-walled carbon nanotubes (SWCNTs), and graphene oxide (GO). Nevertheless, their powder consistency, which makes the recovery and reuse after adsorption difficult, is the main drawback for these materials. More recently, SWCNT buckypapers (SWCNT BPs) have been proposed as self-standing porous membranes for filtration and adsorption processes. In this paper, the adsorption capacity and selectivity of Pb2+ (both from neat solutions and in the presence of other interferents) by SWCNT BPs were evaluated as a function of the increasing amount of GO used in their preparation (GO-SWCNT buckypapers). The highest adsorption capacity, 479 ± 25 mg g-1, achieved for GO-SWCNT buckypapers with 75 wt.% of graphene oxide confirmed the effective application of such materials for cheap and fast water decontamination from lead.


Graphite , Metals, Heavy , Nanotubes, Carbon , Water Pollutants, Chemical , Adsorption , Decontamination , Technology , Water , Water Pollutants, Chemical/analysis
11.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 24.
Article En | MEDLINE | ID: mdl-35455391

In this study, in order to address the drawback of cisplatin (CDDP)-induced ototoxicity, we propose a straightforward strategy based on the delivery of a sulfur-based antioxidant, such as lipoic acid (LA), to HEI-OC1 cells. To this aim, hybrid liposomes (LA@PCGC) with a spherical shape and a mean diameter of 25 nm were obtained by direct sonication of LA, phosphatidylcholine and a gelatin-curcumin conjugate in a physiological buffer. LA@PCGC were found to be stable over time, were quickly (i.e., by 1 h) taken up by HEI-OC1 cells, and guaranteed strong retention of the bioactive molecule, since LA release was less than 20%, even after 100 h. Cell viability studies showed the efficiency of LA@PCGC for stabilizing the protective activity of LA. Curcumin residues within the functional liposomes were indeed able to maintain the biological activity of LA, significantly improving (up to 2.19-fold) the viability of HEI-OC1 cells treated with 5 µM CDDP. Finally, LA@PCGC was incorporated within an alginate-based injectable hydrogel carrier to create a formulation with physical chemical features suitable for potential ear applications.

12.
Materials (Basel) ; 15(5)2022 Feb 22.
Article En | MEDLINE | ID: mdl-35268879

With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100-170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.

13.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article En | MEDLINE | ID: mdl-35216501

In this study, actively-targeted (CD44-receptors) and dual stimuli (pH/redox)-responsive lipid-polymer nanoparticles were proposed as a delivery vehicle of doxorubicin hydrochloride in triple negative breast cancer cell lines. A phosphatidylcholine lipid film was hydrated with a solution of oxidized hyaluronic acid and doxorubicin, chosen as model drug, followed by a crosslinking reaction with cystamine hydrochloride. The obtained spherical nanoparticles (mean diameter of 30 nm) were found to be efficiently internalized in cancer cells by a receptor-mediated endocytosis process, and to modulate the drug release depending on the pH and redox potential of the surrounding medium. In vitro cytotoxicity assays demonstrated the safety and efficacy of the nanoparticles in enhancing the cytotoxic effect of the free anticancer drug, with the IC50 values being reduced by two and three times in MDA-MB-468 and MDA-MB-231, respectively. The combination of self-assembled phospholipid molecules with a polysaccharide counterpart acting as receptor ligand, and stimuli-responsive chemical moieties, was carried out on smart multifunctional nanoparticles able to actively target breast cancer cells and improve the in vitro anticancer activity of doxorubicin.


Breast Neoplasms/drug therapy , Doxorubicin/chemistry , Doxorubicin/pharmacology , Lipids/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Polysaccharides/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Delivery Systems/methods , Drug Liberation/drug effects , Endocytosis/drug effects , Female , Humans , Hyaluronan Receptors/metabolism , Hyaluronic Acid/metabolism , Hydrogen-Ion Concentration , Particle Size
14.
Molecules ; 26(22)2021 Nov 19.
Article En | MEDLINE | ID: mdl-34834096

The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and qexp12 of 19.72 and 33.45 mg g-1, respectively) and reduced affinity for anionic RD (qexp and qexp12 of 28.93 and 13.06 mg g-1, respectively) and neutral BR (qexp and qexp12 of 36.75 and 15.85 mg g-1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.

15.
Pharmaceutics ; 13(7)2021 Jul 07.
Article En | MEDLINE | ID: mdl-34371729

Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.

16.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article En | MEDLINE | ID: mdl-34209825

Functional nanocarriers which are able to simultaneously vectorize drugs to the site of interest and exert their own cytotoxic activity represent a significant breakthrough in the search for effective anticancer strategies with fewer side effects than conventional chemotherapeutics. Here, we propose previously developed, self-assembling dextran-curcumin nanoparticles for the treatment of prostate cancer in combination therapy with Doxorubicin (DOXO). Biological effectiveness was investigated by evaluating the cell viability in either cancer and normal cells, reactive oxygen species (ROS) production, apoptotic effect, interference with the cell cycle, and the ability to inhibit cell migration and reverse the epithelial to mesenchymal transition (EMT). The results proved a significant enhancement of curcumin efficiency upon immobilization in nanoparticles: IC50 reduced by a half, induction of apoptotic effect, and improved ROS production (from 67 to 134%) at low concentrations. Nanoparticles guaranteed a pH-dependent DOXO release, with a more efficient release in acidic environments. Finally, a synergistic effect between nanoparticles and Doxorubicin was demonstrated, with the free curcumin showing additive activity. Although in vivo studies are required to support the findings of this study, these preliminary in vitro data can be considered a proof of principle for the design of an effective therapy for prostate cancer treatment.


Curcumin/pharmacology , Dextrans/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Prostatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Curcumin/administration & dosage , Dextrans/administration & dosage , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Drug Delivery Systems , Humans , Male , Nanoparticles , PC-3 Cells
17.
ChemMedChem ; 16(15): 2315-2329, 2021 08 05.
Article En | MEDLINE | ID: mdl-33890721

Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.


Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , Humans , Neoplasms/metabolism , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism
18.
Nanomaterials (Basel) ; 11(5)2021 Apr 25.
Article En | MEDLINE | ID: mdl-33922934

Nanoparticles with active-targeting and stimuli-responsive behavior are a promising class of engineered materials able to recognize the site of cancer disease, targeting the drug release and limiting side effects in the healthy organs. In this work, new dual pH/redox-responsive nanoparticles with affinity for folate receptors were prepared by the combination of two amphiphilic dextran (DEX) derivatives. DEXFA conjugate was obtained by covalent coupling of the polysaccharide with folic acid (FA), whereas DEXssPEGCOOH derived from a reductive amination step of DEX was followed by condensation with polyethylene glycol 600. After self-assembling, nanoparticles with a mean size of 50 nm, able to be destabilized in acidic pH and reducing media, were obtained. Doxorubicin was loaded during the self-assembling process, and the release experiments showed the ability of the proposed system to modulate the drug release in response to different pH and redox conditions. Finally, the viability and uptake experiments on healthy (MCF-10A) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a new drug vector in cancer therapy.

19.
Molecules ; 26(5)2021 Mar 03.
Article En | MEDLINE | ID: mdl-33802608

In this work, we combined electrically-conductive graphene oxide and a sodium alginate-caffeic acid conjugate, acting as a functional element, in an acrylate hydrogel network to obtain multifunctional materials designed to perform multiple tasks in biomedical research. The hybrid material was found to be well tolerated by human fibroblast lung cells (MRC-5) (viability higher than 94%) and able to modify its swelling properties upon application of an external electric field. Release experiments performed using lysozyme as the model drug, showed a pH and electro-responsive behavior, with higher release amounts and rated in physiological vs. acidic pH. Finally, the retainment of the antioxidant properties of caffeic acid upon conjugation and polymerization processes (Trolox equivalent antioxidant capacity values of 1.77 and 1.48, respectively) was used to quench the effect of hydrogen peroxide in a hydrogel-assisted lysozyme crystallization procedure.


Alginates/chemistry , Antioxidants/pharmacology , Caffeic Acids/pharmacology , Cytotoxins/pharmacology , Graphite/chemistry , Hydrogels/chemistry , Oxidative Stress/drug effects , Antioxidants/chemistry , Caffeic Acids/chemistry , Cells, Cultured , Cytotoxins/chemistry , Drug Liberation , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Lung/drug effects , Lung/pathology , Polymerization
20.
Cancers (Basel) ; 13(6)2021 Mar 13.
Article En | MEDLINE | ID: mdl-33805713

Diffuse Intrinsic Pontine Gliomas (DIPGs) are highly aggressive paediatric brain tumours. Currently, irradiation is the only standard treatment, but is palliative in nature and most patients die within 12 months of diagnosis. Novel therapeutic approaches are urgently needed for the treatment of this devastating disease. We have developed non-persistent gold nano-architectures (NAs) functionalised with human serum albumin (HSA) for the delivery of doxorubicin. Doxorubicin has been previously reported to be cytotoxic in DIPG cells. In this study, we have preclinically evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoarchitectures (NAs-HSA-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and doxorubicin-loaded NAs. Colony formation assays demonstrated greater potency of NAs-HSA-Dox on colony formation compared to doxorubicin. Western blot analysis indicated increased apoptotic markers cleaved Parp, cleaved caspase 3 and phosphorylated H2AX in NAs-HSA-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of NAs-HSA-Dox into DIPG neurospheres compared to doxorubicin alone. Despite the potency of the NAs in vitro, treatment of an orthotopic model of DIPG showed no antitumour effect. This disparate outcome may be due to the integrity of the blood-brain barrier and highlights the need to develop therapies to enhance penetration of drugs into DIPG.

...